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A b s t r a c t  

The use of power sum symmetric functions leads to Newton's identities, which 
relate the traces of various powers of A, the adjacency matrix of a graph, and the 
coefficients of the characteristic polynomials. While it is possible to solve Newton's 
identities and generate the coefficients by recursion or, alternatively, to derive them 
by sequential manipulations (yielding the explicit formulas), we show how the 
results can be expressed using a combinatorial approach and relate the evaluation of 
the coefficients to selected Young diagrams. 

1. I n t r o d u c t i o n  

The characteristic polynomial of  a graph, Ch(x)  = det (A - Ix ) ,  where A is 
the adjacency matr ix of  the graph and I is the identi ty matr ix of  the same dimension, 
is one of  the basic graph invariants. The characteristic polynomial ,  as well as spectral 
moments ,  has an important  property:  the coefficients are integers, and can be related 

to the enumerat ion o f  selected graph invariants. Interest in the characteristic poly- 

nomial also stems from the fact that it may reveal some relationship between the 
structure and the mathematical representation of  the graph that can become obscured 

in non-integer data, such as eigenvalues. Several schemes for obtaining the characteristic 

polynomial  have been discussed in the literature [1] and, in particular, it has been 

suggested that approaches based on the evaluation of  traces of  powers o f  the adjacency 
matr ix are the most  computat ional ly simple [2] .  In comparison, combinatorial  
approaches based on the enumerat ion of  selected subgraphs, the first contr ibut ion 
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to which appears to have been made by Coulson [3] but subsequently completely 
developed independently by several investigators [4], generally involve consideration 
of a large number of small subgraphs. Sachs formulated most completely the approach 
by showing that one need only consider subgraphs K 2 (isolated edges) and C n (isolated 
cycles), and various combinations of these. The difficulty is that the number of 
components proliferates very quickly, and for graphs having a dozen or more vertices, 
the procedure may already be too cumbersome. An alternative is to start with the 
A matrix and its powers, either indirectly as in the so-called Krylov method [5] and 
the Frobenius method [6], or in the more direct approach described by Frame [7], 
to which Balasubramanian drew attention [2]. The method has already been used by 
the French atronomer Leverrier in the 1980s, as pointed out by Trinajstid and co- 
workers [8]. This approach can be related to Newton's identities, as recently pointed 
out by Barakat [9]. It appears that this scheme based on the use of traces of matrices 
has computational advantages, as discussed convincingly by Balasubramanian [2] and 
Barakat [9]. In particular, Balasubramanian developed a computer program that gives 
the coefficients of  the characteristic polynomial for sizable graphs having over fifty 
vertices and some twenty cycles. 

2. Ou t l i ne  o f  t he  s y m m e t r i c  f u n c t i o n  a p p r o a c h  

The basis for the method was known even to Newton [10], who was involved 
in solving the equations associated with the characteristic polynomial. Symmetric 
functions of the roots of an equation are those functions in which all the roots are 
equally involved, so that the expression is unaltered in value when any two of the 
roots are interchanged [11]. The equations Newton considered can be written as [12] : 

S1 + Pl = 0 

S 2 + P l S l  + 2P2 = 0 

s 3 + PlS2 + P2Sl + 3p3 = 0 (1) 

S4 + PlS3 + P2S2 + P3Sl + 4P4 = 0 

Here, the Pk are the coefficients of  the characteristic polynomial 

Ch(x) = x n + p l  x n - 1  + p2 x n - 2  + . . .  + Pn ' 

and the s k are the traces of A k [13]. The above equations need to be solved for all 
the sk, and Burnside [12] gives the solution for the first initial Sk: 
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S1 = --  P l  

s 2 = p~ - 2pz  

= 3 + 
s3 - P l  3 P I P 2  - 3P3 

4 _ 4 p ~ p 2  + + 2 p ~  - s4  = Pl  4 P l  P2 P4 

$5 = --  p15 + 5p31p2 _ 5p21p3_ 5 ( p 2  _ p 4 ) p  1 

(2)  

+ 5 ( p 2 P 3  - Ps ) 

2 ! P 2  = _ s 2 

3 ! P3 = 2s3 

= ,2  
4 ! P 4  - 6s 4 + 3s  2 

5 ! P s  = 24Ss - 20s3s2  

6 ! P 6  = - 120s 6 + 9 0 s 4 s  2 + 40s~ - 15s~ 

9 ! P  9 

l O ! P l o  

= 4 0 3 2 0 s  9 - 25920s  7 s 2 - 20160s  6 s 3 - 18144s  s s 4 + 9 0 7 2 s  s s 2 

+ 15120s4s3s2 + 2 2 4 0 s ~ - 2 5 2 0 s 3 s 3  

= _ 3 6 2 8 8 0 s l o  + 2 2 6 8 0 0 s  8 s 2 + 172800s  7 s 3 + 15100s  6 s 4 

- 75600s  6s~ + 72576S2s - 120960s  s s 3s  2 - 5 6 7 0 0 s ~ s  2 

2 2 _ 945s  5 3 + 2 5 2 0 0 s  3 s2 - 5 0 4 0 0 S  4 S 2 + 18900s  4 S 2 

(3) 

Again,  any  pa t t e rn  to  the solut ions  appears  lost. I t  is d i sappoin t ing  tha t  very s imple  

express ions  involving b o t h  s k and Pk, when  solved for  e i ther  the s k or  Pk,  appea r  to  

ing the fo l lowing explici t  forms:  

Observe tha t  the very s imply  pattern o f  N e w t o n ' s  equa t ions  (1) - which  allows one 

to  wri te  any line immed ia t e ly  f rom the previous one - has been lost in solving the 
equa t ions ,  and any  pa t t e rn  in eqs.  (2),  the solut ions  for  the s k appear ,  at bes t ,  

compl i ca t ed .  Barakat  [9] considers  the solut ions  for  the Pk in t e rms  o f  the sk, ob ta in-  
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no longer show the simplicity that the original equations possess. However, as we will 
show, the above solutions for the Pk do have a relatively simple form if one recognizes 
the structural ingredients that are involved. 

3. S t r u c t u r e  o f  t he  c o e f f i c i e n t s  

Let us first consider the terms appearing in the solution for Pk, which can be 
illustrated by considering Plo" The following terms appear: 

2 2 2 2 3 2 2  5 
S10' S8S2' $7S3' S6S4' S6S2' $5' $5 $3S2'  $4S2' $4S3' $4S2' $3S2' S2 " 

It is not difficult to recognize the above terms as various partitionings of  10, i.e. 10 + 0, 
8 + 2 , 7 + 3 , 6 + 4 , 6 + 2 + 2 , 5 + 5 , 5 + 3 + 2 , 4 + 4 + 2 , 4 + 3 + 3 , 4 + 2 + 2 + 2 ,  
3 + 3 + 2 + 2, and 2 + 2 + 2 + 2 + 2. The above are in fact all the possible partitionings 
of  10, excluding those involving 1. In fig. 1, v~e depict the above partitionings using 
Young diagrams [ 14]. The numerical values for the coefficients have also been included 
in fig. 1. The question now is to consider whether there is some relationship between 
the particular diagram and the magnitudes of  the corresponding coefficients. It is easy 
to see that the signs of  the coefficients alternate just as the number of  rows in the 
Young diagram increases: the odd number of  rows for Plo gives a negative sign (the 
opposite is the case with P9, as illustrated in fig. 2). The only other apparent and 
helpful observation is the fact that the magnitudes decrease as the number of  rows 
increases, or if the rows have less dissimilar "lengths". This suggests that such terms 
have fewer and fewer factors. Because the leading coefficient,can be recoginized as 
10 !/10, this suggests that we may have a simple recipe for deriving other coefficients by 
dividing 10 ! by suitable other numbers. One immediately finds that 10 ! / 8 . 2  = 226800; 
hence, the numbers 8 and 2, which characterize the partitioning of 10, also indicate 
the factors. It is now easy to verify that this is indeed the rule for obtaining the other 
coefficients, if no two rows have the same number of  elements (boxes). In the case of 
the partition 5 + 5, instead of 72576 we obtain twice this value. Likewise, for the parti- 
tion 4 + 4 + 2, we obtain 1 0 ! / 4 . 4 . 2  = 113400 instead of  56700. In the case that a 
single term in the partition repeats itself three times (e.g. 4 + 2 + 2 + 2), we obtain a 
number six times too large, which suggests an additional factor of 3 ! Indeed, as one 
can verify for the partitions 3 + 3 + 2 + 2 and 2 + 2 + 2 + 2 + 2, when identical terms 
appear in the partition we have to divide by the corresponding factorial, resulting in 
1 0 ! / ( 3 . 3 . 2 . 2 )  (2!) (2I) and 1 0 ! / ( 2 . 2 . 2 . 2 . 2 )  (5!), respectively. We can thus 
formulate simple rules for the magnitudes of  the coefficients of  various characteristic 
polynomials: 
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I I I I  I I I  

I [ [ J  i 

I 
J 

I 
I 

l l l l l l l  

I l l l l l  
I l l l l l  

I l l l l l  

362880  = 10! /10  

226800  = 1 0 ! / 8 . 2  

172800  = 1 0 ! / 7 . 3  

151200 = 1 0 ! / 6 . 4  

75600 = 1 0 ! / 6 . 2 . 2 . 2 !  

72576 = 1 0 ! / 5 . 5 . 2 !  

120960 = 1 0 ! / 5 . 3 . 2  

56700 = 1 0 ! / 4 . 4 . 2 . 2 !  

50400  = 1 0 ! / 4 . 3 . 3 . 2 !  

18900 = 1 0 ! / 4 . 2 - 2 . 2 . 3 !  

25200 = 1 0 ! / 3 . 3 . 2 . 2 . 2 ! . 2 !  

945 = 1 0 ! / 2 s - 5 !  

Fig. 1. Young  diagrams and  the  associated coefficients  of  10!pro decomposed  into 

factors  governed by  the  form of  the  diagrams. 
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I I I  I I  I I  11 40320 = 9!/9 

__[._J 25920 = 9!/7.2 
l l l l  

I f l  [ 20160 = 9!/6.3 

18144 = 9!/5.4 

9072 = 9!/5.22 .2! 

15120 = 9! /4 .3 .2  

2240 = 9!/33 .3! 

_~_ --] 

2520 = 9!/3.23.3! 

Fig. 2. Young diagrams and the decomposition of the coefficients of 9!p9. 

RULE 

n!Pn is given by the sum of  the terms derived from all possible partitionings 
of  n, excluding terms involving 1 as a component .  Signs are determined by the product  
o f  the parities o f  R and C, where R, C represent the number  of  rows and columns in 
the associated Young diagrams. The magnitude of  the term is determined by the 
quotient k!/'2 m n n!, where m is summed over all partitionings of  k (excluding those 
involving 1), and n gives the multiplicity (degeneracy) of  the corresponding m. 

With the above rule, one can write down the set o f  equations giving explicit 
values for the Pk by inspection, achieving again the simplicity of  the original equations 
of  Newton.  
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